We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.

Standard Form

A linear equation in standard form is an equation that looks like

ax + by = c

where a, b, and c are real numbers and a and b aren't both zero. But c can be zero if it wants. It's the favorite child, so it gets special privileges.

If only a = 0, the equation can be rewritten to look like this:

y = (some number)

If only b = 0, the equation can be rewritten, too:

x = (some number)

For example, the equation 8y = 3 is equivalent to the equation , which is also in standard form (with b = 1).

Meanwhile, the equation 2x = 4 is equivalent to the equation x = 2, which is also in standard form (with a = 1).

If either a or b is zero, we know how to graph the equation and how to read off an equation from a graph. You probably suspect there will be some cases where it won't be so easy, and neither a nor b will be zero. You suspect right.

Okay, now what if an equation throws us a curveball? Should we sacrifice our bodies and take our base?

If neither a nor b is zero, we can most easily graph the linear equation by finding its intercepts.

Sample Problem

Graph the linear equation x + 4y = 8.

Let's find the intercepts. To find the x-intercept, let y = 0 and solve for x, since the x-intercept will be at a point of the form (something, 0).

x + 4(0) = 8

So x = 8 is the x-intercept.

For the y-intercept, let x = 0 and solve for y.

0 + 4y = 8

And y = 2 is the y-intercept. Sweet, we've tracked down both intercepts. Who needs a or b to be zero? Not us.

Now we can plot the intercepts:

Connect the dots to get the line:


Sample Problem

Write, in standard form, the linear equation graphed below:

The x intercept is at (-1, 0), which means whatever a, b, and c are, our equation looks like this:

a(-1) + b(0) = c

Let's make life easy on ourselves and let a = 1. That's right...we're going to dip this equation in a bucket of A-1 sauce.

1(-1) + b(0) = c
-1 = c

To find b, the remaining coefficient, we look at the y-intercept: y = -2. At that point, x will be 0, and we've already decided that c = -1, so we find:

0 + b(-2) = -1

Therefore, . We now know all the coefficients and can write the equation:

If we want to make things pretty, we can multiply both sides of the equation by 2 and write the resulting equation, which has integer coefficients. If we want to make things really pretty, we can dress the equation up in a sequined ball gown and give it a makeover. Let's start small, though:

2x + y = -2

Sample Problem

Write, in standard form, the linear equation graphed below:

The x intercept is -2, which means whatever a, b, and c are, our standard-form equation is:

a(-2) + b(0) = c

We can let a = 1, so:

-2 = c

To find b we look at the y-intercept, which occurs at (0, 4). And since we've decided c = -2, we find:

0 + b(4) = -2

This means . We now know all the coefficients. Not on a first-name basis, but well enough to get by. We can now write the equation.

To make things pretty, we can multiply both sides of the equation by 2 to get an equivalent equation with integer coefficients:

2xy = -4

Now for that makeover.